

ELEKTRİK ve ELEKTRONIK MÜHENDİSLİĞİ SERGISI BÖLÜMÜ

DESIGN AND PRODUCTION OF A MULTIBAND JAMMER

Anıl Erge-İbrahim Cem Özgül-Kıvanç Kandemir ADVISOR: Asst. Prof. Dr. Mustafa SEÇMEN

Bandwidth

(MHz)

Voltage

Peak to

 $Peak(V_{pp})$

VCO (ZX95-2500W+)

The frequency range: 800-2700 MHz

Center

Frequency

(MHz)

RF Output

Frequency

Band

(MHz)

: 1-4 dBm

Tuning

Voltage

(Volts)

INTRODUCTION

In this project, a 900-1900 MHz frequency band (GSM900, GPS and GSM1800) is used for the jamming of wide-band or multi-band signals. For this purpose, a signal jammer system is designed and manufactured. In this design, being different from the others in the market, a simple design containing only one IF channel and a single RF channel composed of a voltage controlled oscillator, highfrequency amplifier, and an antenna is used for multi-band jamming.

RF SECTION

Low Pass Filter (Cutoff Frequency: 1820 MHz)

High Frequency Amplifier (MGA-31189)

Measured Insertion Loss of Low Pass Filter in dB

Adder

Measured Gain of MGA-31189 in dB

THEORY

Downlink frequencies

To jam the devices, downlink frequencies more easier than uplink frequencies. Downlink frequency in the applications are

	Downlink	
	frequency (MHz)	
Turkcell (GSM 900)	935-947	
Vodafone (GSM 900)	947-960	
GPS	1575	
Avea (GSM 1800)	1805-1820	

Friss Transmission Equation

Noise generator

A noise signal with an effective of 180 mV peak-to-peak voltage is obtained (almost uniform frequency spectrum)

Noise signal with an effective of 300 mV peak-to-peak voltage is added to DC tune voltage successfully

JAMMING TESTS

 $P_r = -30 \text{ dBm}, f_{max} = 1900 \text{ MHz}, R_{max} = 10$ meters; G_a=2 dBi (the antenna gain of receiver device such as cell phone); G_{jammer} $= G_k = 5 dBi$

Transmitted Power $(P_t) \approx +23 \text{ dBm} = 0.25$ Watts

DESIGN

The Schematic of Complete Jammer

The Schematic of IF Section

RESULTS

Jammer on (Turkcell)

Effective Range

	GSM-900	GPS	GSM-1800		
Jamming	5-10*	>100	5-10*		
Distance (m)					

* Depends on the positions of base stations

DC Power Consumption

	Volts	Currents	Power
	(V)	(mA)	(mW)
Amplifier	5	80	400
VCO	5	35	175
Noise Generator	10	10	100
Adder	15	12	180

Cost Analysis

VCO	60\$
Amplifier	25\$
Low Pass Filter	2\$
Noise Generator	3\$
Adder Circuit	3\$
Voltage Regulator	2\$
Antenna	6\$
Box	15\$
Others	1\$

• Multiband Jamming is done with a very simple IF channel, only one RF channel and a switching system